OpenAD 1/2

Jean Utke¹

¹University of Chicago and Argonne National Laboratory

ECCO Workshop Nov. 9/10, 2009

outline

- part 1: OpenAD
 - current
 - changes
 - research
 - some other apps
 - for MITgcm
- part 2: adjoint Experiments
 - with Patrick and Chris
 - MITgcm experiments

why automatic differentiation?

- given: some numerical model $y = f(x) : \mathbb{R}^n \mapsto \mathbb{R}^m$ implemented as a (large / volatile) program
- wanted: sensitivity analysis, optimization, parameter (state) estimation, higher-order approximation...
- don't pretend we know nothing about the program (and take finite differences of an oracle)
- ② get machine precision derivatives as $J\dot{x}$ or \bar{y}^TJ or ... (avoid approximation-versus-roundoff problem)
- 1 the reverse (aka adjoint) mode yields "cheap" gradients
- if the program is large, so is the adjoint program, and so is the effort to do it manually ... easy to get wrong but hard to debug

OpenAD overview - current

- www.mcs.anl.gov/OpenAD
- forward and reverse
- source transformation
- modular design
- aims at large problems
- language independent transformation
- researching combinatorial problems
- current Fortran front-end Open64 (Open64/SL branch at Rice U)
- uses association by address

 (i.e. has an active type)
- Rapsodia for higher-order derivatives via type change transformation

OpenAD overview - changes

- expanded language coverage (common blocks, equivalence, unstrucctured control flow, intrinsics,...)
- new pre- and postprocessor (python, MITgcm consequences)
- migration from Open64 to Rose (LLNL)

Fortran pipeline:

some research toopis

- adjoinable MPI
- optimal local preaccumulation (scarcity)
- additional parallelism from checkpointing
- higher order derivatives (in parallel)
- ..

some research toopis

- adjoinable MPI
- optimal local preaccumulation (scarcity)
- additional parallelism from checkpointing
- higher order derivatives (in parallel)
- ...
- make it work on code *<insert something here>* ...

some other applications

- suite of reactor models
 - old style Fortran
 - equivalence, unstructured control flow,...
- transport of nuclear materials (container safety)
 - Fortran 9X
 - · dependecies via files
 - dynamic memory
- forthcoming: ice sheet models (NSF and DOE projects)

needs migration to Rose

for MITgcm

- installed on beagle (updated/recompiled nightly)
- w. Chris (use w/o intervention)
 - cost function change,
 - adding extra output
 - compiler optimization
 - computational cost
- w. Patrick 20 year 1x1 run on beagle
 - setup hurdle (find the right combination of modules for the sge run script)
 - bottleneck checkpointing via NFS (switch to local disk)
- usability: remove extra steps e.g. Common Block to Module conversion, some specific changes to non-transformed files. e.g. cost_final
- next step w. Chris: "high-res" run